Not Just Maintaining
Scott Jasinski – Building Energy Specialist

Smart Energy Design Assistance Center (SEDAC), University of Illinois at Urbana Champaign
Providing effective strategies for public and private buildings in Illinois
Presentation Overview

- Maintenance and Energy
- Utilities and Benchmarking
- Maintenance Programs
- Recommended Tips

Take away: Regular Maintenance cost less over the long term.
Maintenance and Building Energy

- ~40-50% of building energy and energy costs are from heating, cooling, fans, and pumps and much higher when adding in lighting.
- Some utility budgets exceed maintenance salaries
- Building Operator is in control of equipment operation, maintenance, and replacement.
Building Energy Example

- Newer School (~200,000 sf) with BAS
- Exhaust Fans weren’t scheduled
- Estimated $7,000 in savings from scheduling off when school was unoccupied.
- Maintenance goes beyond fixing broken equipment. Maintenance is making sure the building systems are running in the best means possible.
Utility Bills

- What are your utility costs or budget?
- The first step to excellent maintenance is knowing what you are using.
Utility Bills

- Usually finance department is in charge of these.
- Don’t be shy to ask for them.
- You can typically download from the internet.
- Why look at these?
Bill Summary

- **Previous Balance**: $81.21
- **Total Payments - Thank You**: $81.21
- **Amount Due on July 24, 2012**: $81.78

Service from 5/31/2012 to 7/2/2012 - 32 Days

Electricity Supply Services

- **Electricity Supply Charge**: 678 kWh X 0.06177 = 41.88
- **Transmission Services Charge**: 678 kWh X 0.00816 = 5.53
- **Purchased Electricity Adjustment**: 3.39

Delivery Services - ComEd

- **Customer Charge**: 6.86
- **Standard Metering Charge**: 2.76
- **Distribution Facilities Charge**: 678 kWh X 0.02407 = 16.32
- **IL Electricity Distribution Charge**: 678 kWh X 0.00121 = 0.82

Taxes and Other

- **Smart Meter Program**: 0.02
- **Environmental Cost Recovery Adj**: 678 kWh X 0.00027 = 0.18
- **Energy Efficiency Programs**: 678 kWh X 0.00161 = 1.09
- **Franchise Cost**: $26.19 X 2.64000% = 0.69
- **State Tax**: 2.24

Total Current Charges

- **Total**: $81.78

(continued on next page)
Utility Bills - Tracking

- Many methods for this
 - Spreadsheet
 - Third Party Software
 - Energy Insights (ComEd)
 - Portfolio Manager
<table>
<thead>
<tr>
<th>Month/Year</th>
<th>kW</th>
<th>kWh</th>
<th>Total kWh Bill</th>
<th>$/kWh</th>
<th>therms</th>
<th>cost</th>
<th>HDD</th>
<th>CDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun.09</td>
<td>835</td>
<td>209,114</td>
<td>$24,291</td>
<td>0.11616</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul.09</td>
<td>692</td>
<td>129,298</td>
<td>$16,206</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug.09</td>
<td>721</td>
<td>139,912</td>
<td>$17,340</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep.09</td>
<td>848</td>
<td>202,455</td>
<td>$23,775</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct.09</td>
<td>897</td>
<td>180,645</td>
<td>$22,114</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov.09</td>
<td>551</td>
<td>158,338</td>
<td>$17,585</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec.09</td>
<td>561</td>
<td>207,017</td>
<td>$22,336</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan.10</td>
<td>543</td>
<td>185,951</td>
<td>$20,388</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb.10</td>
<td>532</td>
<td>169,499</td>
<td>$18,835</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar.10</td>
<td>541</td>
<td>194,919</td>
<td>$21,183</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr.10</td>
<td>847</td>
<td>156,282</td>
<td>$19,636</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May.10</td>
<td>900</td>
<td>174,458</td>
<td>$21,604</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jun.10</td>
<td>1,020</td>
<td>255,606</td>
<td>$30,309</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul.10</td>
<td>848</td>
<td>287,931</td>
<td>$32,323</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug.10</td>
<td>821</td>
<td>340,660</td>
<td>$36,939</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep.10</td>
<td>983</td>
<td>302,541</td>
<td>$34,393</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct.10</td>
<td>896</td>
<td>255,347</td>
<td>$29,529</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov.10</td>
<td>678</td>
<td>184,236</td>
<td>$21,605</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Utility Bills - Tracking

- One step further is to track weather
- Use Cooling and Heating Degree Days
 - Represent intensity of weather for the day/month/year
 - Available at degreedays.net
 - Use closest weather station
 - Add to spreadsheet
One step further is to track weather using Cooling and Heating Degree Days, which represent the intensity of weather for the day/month/year. Available at degreedays.net, use the closest weather station and add to a spreadsheet.
Utility Bills – Tracking – WHY?

- Begin to compare usage

![Graph showing electricity consumption and cooling degree days over time](image-url)
Utility Bills – Tracking – Benefits

- Comparing current usage to historic usage may help to notice malfunctioning equipment, equipment off schedule, etc.
- Better estimating of utility budgets.
- Verify energy savings projects.
- May want to investigate submetering.
Benchmarking

- Once you know your consumption you can begin to compare to other buildings.

- Compare on a per foot basis.
 - Usually seen as kBtu per square foot per year
 - Can also compare electricity or natural gas use per square foot.

- Know how much room there is to improve
Benchmarking - Tools

- ENERGY STAR’s Target Finder
- Commercial Buildings Energy Consumption Survey (CBECS)
Target Finder

- Uses similar buildings types in the same areas
- Input zip code, facility characteristics, and annual energy consumption
- Receive a score of how you compare
- If your score is higher than 75 you could qualify as an ENERGY STAR building
School Benchmarking

SEDAC Illinois K-12 School Energy Use Intensities

- Electric kBtu/sf
- Gas kBtu/sf
- $/sf

Energy Use Intensity (kBtu/sf/yr)

Energy Cost Intensity ($/sf/yr)
Benchmarking – Motivation

- Comparing current usage to historic usage may help to notice malfunctioning equipment, equipment off schedule.

- Comparing to other buildings can help quantify your potential for energy savings / reduction.
Performance and Maintenance

- Performance of the building is heavily influenced by maintenance.
Various Maintenance Approaches

- **Reactive**
 (“run it until it breaks”) $18/hp
- **Preventative**
 (“follow the schedule”) $13/hp
- **Predictive**
 (“test when to replace”) $9/hp
- **Reliability Centered Maintenance** (hybrid) $6/hp
Cost of Deferred Maintenance

Graphic from Stonegate Property Inspections, LLC
Maintenance – Where do you stand?

- **Reactive.** No action or effort is made to maintain equipment as it was originally designed.
 - Disadvantages
 - Increased cost due to down time
 - Increased labor, mostly from overtime
 - Possible secondary damage
 - Inefficient use of staff resources
 - Highest long-term cost
 - Advantages:
 - Low immediate cost
 - Less staff

- **Preventative.** Actions performed based on a predetermined time/use schedule. (Time based maintenance)
 - Disadvantages
 - Catastrophic failures still occur
 - Labor Intensive
 - Sometimes unneeded maintenance
 - Advantages:
 - Increased equipment life
 - Decrease in long-term cost (labor and parts)
 - Energy Savings
 - Better worker morale and safety

- **Predictive.** Measurements taken to detect when to perform maintenance
 - Disadvantages
 - Increased short-term cost in diagnostic equipment
 - Increased short-term cost in staff training
 - Savings potential not readily seen by management
 - Advantages:
 - Increased equipment life
 - Decrease in long-term cost (labor and parts)
 - Energy Savings
 - Better worker morale and safety
 - Estimated 8% to 12% cost savings over preventative

- **Hybrid.** Combination of 3 other approaches but with root cause analysis to solve on going problems.
 - Disadvantages
 - Significant start up cost, training, equipment, etc.
 - Savings potential not readily seen by management
 - Advantages:
 - Most efficient approach
 - Lower cost by reducing unnecessary maintenance
 - Reduced likelihood of sudden failures
 - Usually incorporates root cause analysis

Comparison of Four Maintenance Programs (Piotrowski 2001)
O&M Best Practices Guide, Release 3.0
Monthy Gas Usage

- HDD line is a relative indicator of gas use
- Notice pretty good seasonal dependency

Monthy Electricity Usage

- 2008 had summer school
- Some anomalies in 2007
- Fairly high spring and fall baseload
Then, things go crazy.
Economics of Maintenance

- It is estimated that O&M programs targeting energy efficiency can save 5% to 20% on energy bills without significant capital investment (PECI 1999)

- Tune-ups typically translate to energy savings of 5% to 15% (E SOURCE)

- Cost of tune-up (ENERGY STAR)
 - $0.01-$0.10/sf newer bldg
 - $0.10-$0.50/sf older bldg

- US DoE Forrestal Bldg.
 - Steam trap maintenance
 - program saved $250,000/yr
Chiller Tune-Ups = 5% of cooling costs

▪ To maintain efficiency in O&M
 ▪ Maintain economizers
 ▪ Test at least twice a year
 ▪ Damper operation
 ▪ Adjust air temperature sensors
 ▪ Clean and replace air filters
 ▪ Inspect and clean evaporator and condenser coils
 ▪ Measure and correct and refrigerant charge
 ▪ Fix leaks in cabinet and supply ducts
 ▪ Rest condenser water temperature
 ▪ Stage multi-chiller operation to improve part-load performance
 ▪ Other:
 ▪ Raise thermostat settings
 ▪ Reduce run hours
 ▪ Reset chilled water temp
 ▪ Clean evaporator and condenser tubes
 ▪ Minimize use of reheat
 ▪ Don’t cool unused space
Boiler Tune-Ups = 6% SAVINGS

- To maintain efficiency in O&M
 - Develop and implement routine inspection and maintenance program
 - Check steam traps and lines (replace as necessary)
 - Condensate pumps
 - Boiler tune program once per year
 - Insulate piping and central storage tank
 - Blowdown to remove accumulated dissolved solids
 - Excessive blowdown wastes water, energy, and chemicals
 - Water treatment program to prevent scale and corrosion
 - Clean and inspect boiler water and fire tubes
 - Use expansion tank to temper boiler blowdown drainage
 - Install meters on boiler system make-up lines and recirc water loop
 - Consider summer shutdown
Steam Trap Maintenance 15-30% Failed

▪ To maintain efficiency in O&M
 ▪ Test traps and replace as failed
 ▪ Sight method (visually observe steam escaping)
 ▪ Sound method (ultrasonic measuring equipment)
 ▪ Temperature method (thermography) least reliable
 ▪ Automatic diagnostics (self-diagnosing steam trap)
 ▪ Checklist for possible trap failure
 ▪ Abnormally warm boiler room
 ▪ Condensate received venting steam
 ▪ Condensate pump water seal failing prematurely
 ▪ Boiler operating pressure difficult to maintain
 ▪ Vacuum in return lines difficult to maintain
 ▪ Water hammer in steam lines
 ▪ Higher than normal energy bill
 ▪ Inlet and outlet lines to trap nearly the same temperature
Steam Trap Maintenance 15-30% Failed

Steam Leaks

Energy Loss (Millions Btul/yr)

Hole Diameter (inches)

120 psia
110 psia
100 psia
90 psia
80 psia
70 psia
60 psia
50 psia
40 psia
30 psia
25 psia
Presentations will be available at: presentations.sedac.org

Web site: www.sedac.org
Contact: info@sedac.org
1-800-214-7954