Existing Building Upgrades

Shawn Maurer– SEDAC Building Energy Specialist

Smart Energy Design Assistance Center (SEDAC), University of Illinois at Urbana Champaign
SEDAC ILLINOIS K-12 SCHOOL ENERGY USE INTENSITIES

Energy Use Intensity (kBtu/sf/yr)

Electric kBtu/sf Gas kBtu/sf
New Schools, < 20 years old

- Electric kBtu/sf
- Gas kBtu/sf

Energy Use Intensity (kBtu/sf/yr)
ENERGY STAR QUALIFICATION ≠ ≠
UPGRADES CAN EARN ENERGY STAR QUALIFICATION
EXPECTATIONS

- **Energy Cost Savings**
 - Low Hanging Fruit: 15%
 - Moderate Cost: 30%
 - Capital Intensive: 50%

- **Investment Costs**
 - Low Hanging Fruit
100,000 sf building
$1.00/sf energy costs

Savings from upgrades
~$15,000-$30,000 annually

Over 5 years $75-150k
BUILDING COST BREAKDOWN

- Space Heating: $90,000 (45%)
- Interior Lighting: $40,000 (20%)
- Cooling: $30,000 (15%)
- Plug Loads: $16,000 (8%)
- Fans Pumps: $16,000 (8%)
- Water Heating: $4,000 (2%)

Total: $200,000
BUILDING COST BREAKDOWN

- **Space Heating**: $76,538 (38%)
 - **Exterior Lighting**: $3,200 (2%)
 - **Water Heating**: $4,000 (2%)
 - **Fans Pumps**: $12,800 (6%)
 - **Plug Loads**: $16,000 (8%)
 - **Cooling**: $30,000 (15%)
 - **Interior Lighting**: $34,000 (17%)
 - **Savings**: $29,702 (15%)

- **Space Heating**: $90,000 (45%)
 - **Exterior Lighting**: $4,000 (2%)
 - **Interior Lighting**: $40,000 (20%)
 - **Fans Pumps**: $16,000 (8%)
 - **Plug Loads**: $16,000 (8%)
 - **Cooling**: $30,000 (15%)

Total Costs Breakdown

- **Space Heating**: $76,538 (38%)
- **Interior Lighting**: $40,000 (20%)
- **Cooling**: $30,000 (15%)
- **Plug Loads**: $16,000 (8%)
- **Fans Pumps**: $16,000 (8%)
- **Exterior Lighting**: $4,000 (2%)
- **Water Heating**: $4,000 (2%)
- **Savings**: $29,702 (15%)
WHAT YOU CAN UPGRADE

Lighting
- Interior/Exterior
- Exit Signs

Envelope
- Air sealing
- Insulation
- Glazing (Windows Doors)

Mechanical Equipment (HVAC)
- Retro-commissioning (of HVAC equipment)
- Ventilation (controls)
- Temperature Setbacks
- Variable Speed Drives
- Heating (efficient boilers/furnaces)
- Cooling (high-efficiency cooling systems)

Investment Horizons

<table>
<thead>
<tr>
<th>Project</th>
<th>Typical Paybacks (Median-Average)</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Power Mgt.</td>
<td><1yr</td>
<td>1 yr</td>
</tr>
<tr>
<td>Programmable T-Stat</td>
<td>0.2-1 yr</td>
<td>5 yrs</td>
</tr>
<tr>
<td>Boiler Tune Up</td>
<td>1 yr</td>
<td>1 yr</td>
</tr>
<tr>
<td>Motion Sensors</td>
<td>2-3 yrs</td>
<td>5 yrs</td>
</tr>
<tr>
<td>Sealing</td>
<td>2-4 yrs</td>
<td>3 yrs</td>
</tr>
<tr>
<td>Lighting</td>
<td>4-3 yrs</td>
<td>10 yrs</td>
</tr>
<tr>
<td>HVAC replacement</td>
<td>7-14 yrs</td>
<td>20+ yrs</td>
</tr>
<tr>
<td>Insulation</td>
<td>7-16 yrs</td>
<td>25+ yrs</td>
</tr>
<tr>
<td>Window Films</td>
<td>8-10 yrs</td>
<td>10 yrs</td>
</tr>
<tr>
<td>Windows</td>
<td>8-21 yrs</td>
<td>25+ yrs</td>
</tr>
<tr>
<td>Renewable Energy</td>
<td>30-20 yrs</td>
<td>25+ yrs</td>
</tr>
</tbody>
</table>
Interior lighting upgrades

✓ Planning upgrades...key steps
 • Identify and meet lighting needs
 • Select energy efficient lighting equipment
 • Control lighting appropriately for use
WHERE IS LIGHTING TODAY

HID

- Current system efficacy 105 lm/W
- Announced 140-150 lm/W

Linear Fluorescent

- Slow but steady increase & longer life

Induction

- Little or no progress. Low-cost products are catching up on lumen maintenance

LED

- Fast improvements. Efficacy difference between lab and products. DOE prognosis 150 lm/W by 2020 and 200 lm/W by 2030
WHAT TO WHAT

T12s

or

T8s 800 Series
or T5s
Interior lighting upgrades

Compare current light levels (fc) with IES recommended levels.*

Too high consider:
 ▪ removing lamps
 ▪ low power ballast
 ▪ low wattage lamps

*IES = Illuminating Engineering Society
EFFICIENT LIGHTING

Controls

- Occupancy/Vacancy (manual on/ auto off) vs (auto on/ auto off)
- Daylight harvesting (photo cells)
- Bi-level switching (stairwells, garages)
- Dimmers
- Timers
Examples:

- **T12 to T8**
 - 48” four-lamp fluorescent fixture
 - 40W T12 to 28W T8
 - Annual cost savings per fixture: $12.75/yr (33% savings)

- Warehouses, gyms, manufacturing, etc.:
 - High-bay lighting one-for-one fixture replacement
 - 400W Metal halide to Six-lamp 32W T8 high-bay fluorescent
 - Annual cost savings per fixture: $60/yr (51% savings)

Vacancy sensors or time clocks can further reduce use/consumption.
Example 1: Delamp Overlit Rooms – Remove 1 of 4 T8 lamps to bring classrooms from 80fc to 50fc.

<table>
<thead>
<tr>
<th>Annual Savings</th>
<th>Estimated Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWh</td>
<td>kW</td>
</tr>
<tr>
<td>64,001</td>
<td>36</td>
</tr>
<tr>
<td>$5,400</td>
<td></td>
</tr>
</tbody>
</table>

Example 2: Gym Lighting Upgrade – Replace 460W MH with 6-lamp T5 high bay fixtures.

<table>
<thead>
<tr>
<th>Annual Savings</th>
<th>Estimated Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWh</td>
<td>kW</td>
</tr>
<tr>
<td>29,484</td>
<td>16</td>
</tr>
<tr>
<td>$23,400</td>
<td></td>
</tr>
</tbody>
</table>

Example 3: LED Exit Retrofit – Retrofit incandescent exit lamps with LED kits.

<table>
<thead>
<tr>
<th>Annual Savings</th>
<th>Estimated Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWh</td>
<td>kW</td>
</tr>
<tr>
<td>18,396</td>
<td>2</td>
</tr>
<tr>
<td>$2,500</td>
<td></td>
</tr>
</tbody>
</table>

Example – 117,000 SF High School built in 2001 code min. construction.
Exterior lighting upgrades

- Assessing what you have
 - Light levels
 - Lamp nominal wattage
 - Ballast type
 - Ballast factor
 - Controls
Exterior lighting upgrades

✓ Planning upgrades…key steps
 • Identify and meet lighting needs
 • Select energy efficient lighting equipment
 • Control lighting appropriately for use
Exterior lighting upgrades

✓ Planning upgrades...key steps

- Select energy efficient lighting equipment
 - High efficacy lamps (high lumens per watt)
 - Long lamp life
 - Whole assembly efficiency (lamp + ballast + fixture)
Efficient Lighting

Exterior lighting upgrades

✓ Planning upgrades...key steps

• Control lighting appropriately for use
 • Motion sensors
 • Astronomical time clocks
 • Partial night lighting (bi-level)

Astronomical Timers
EFFICIENT LIGHTING - CASE STUDY

DCEO CASE STUDY
Parking Garage Lighting

<table>
<thead>
<tr>
<th>City of Peoria - Jefferson St. Parking Deck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client</td>
</tr>
<tr>
<td>Building type</td>
</tr>
<tr>
<td>Energy measures implemented</td>
</tr>
<tr>
<td>Total project cost</td>
</tr>
<tr>
<td>Projected Annual Cost Savings</td>
</tr>
<tr>
<td>Total DCEO incentive</td>
</tr>
<tr>
<td>Payback period without incentives</td>
</tr>
<tr>
<td>Payback period with incentives</td>
</tr>
</tbody>
</table>

43% incentive

Jefferson Street Parking Deck, Peoria, Illinois
Reducing air leakage

☑ Assessing current conditions

- All existing buildings… have some infiltration and exfiltration.
- Incoming air needs conditioning
STACK EFFECT INFILTRATION

- Positive pressure (with reference to outside)
- Neutral pressure plane
- Negative pressure (with reference to outside)

Photo Credit: David Keefe, Vermont Energy Investment Corporation
Reducing air leakage

- Assessing current conditions
 - Finding leaks can often be fairly easy.
AIR SEALING / WEATHERIZATION

Reducing air leakage

✓ Planning upgrades

• Fixing leaks is straightforward.
 • Caulking and Spray Foam
 • Weather stripping, thresholds
 • Rigid insulation (faced, taped)
 • Vestibules
INSULATION UPGRADES

Roofs and walls

✓ Assessing current thermal envelope
 • Look for opportunities to upgrade with:
 • Roof replacement
 • Air sealing projects
 • Change of use (e.g. auto shop becomes office space)
 • Locations with easy access (attics, infill spaces)
INSULATION UPGRADES

Roofs and walls

- **Planning upgrades**
 - Meet or exceed current prescriptive *total assembly* insulation levels

<table>
<thead>
<tr>
<th>Roofs:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation entirely above deck – R-25.0 continuous</td>
<td></td>
</tr>
<tr>
<td>Attic insulation – R-49.0 (U-0.021)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Walls:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (concrete or masonry) – R-13.3 continuous</td>
<td></td>
</tr>
<tr>
<td>Steel framed – R-13.0 + R-10.0 continuous (U-0.055)</td>
<td></td>
</tr>
<tr>
<td>Walls below grade – R-10.0 continuous</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slabs:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unheated slabs - perimeter insulation – R-10 for 24 in.</td>
<td></td>
</tr>
<tr>
<td>Heated slabs – perimeter insulation – R-15 for 36 in.</td>
<td></td>
</tr>
</tbody>
</table>

Values from ANSI/ASHRAE/USGBC/IES Standard 189.1-2011 *Standard for the Design of High-Performance Green Buildings*

- Incorporate air sealing to further improve performance
GLAZING UPGRADES

All envelope openings including doors, skylights, overhead doors, etc.

✓ Assessing current openings
 • Look for opportunities to upgrade with:
 • Leaking and/or damaged openings
 • Comfort upgrades
 • Air sealing projects
 • Change of use (e.g. warehouse to office space)
GLAZING UPGRADES

All envelope openings including doors, skylights, overhead doors, etc.

✓ Planning upgrades
✓ Detail and Test for Air Tight Installation
GLAZING UPGRADES

All envelope openings including doors, skylights, overhead doors, etc.

✓ Planning upgrades
 • Meet or exceed current prescriptive **total assembly** performance characteristics
 ✓ Total assembly includes frame, spacers, glazing

<table>
<thead>
<tr>
<th>✓ Roofs:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Insulation entirely above deck – R-25.0 continuous</td>
</tr>
<tr>
<td>• Attic insulation – R-49.0 (U-0.021)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>✓ Walls:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Mass (concrete or masonry) – R-13.3 continuous</td>
</tr>
<tr>
<td>• Steel framed – R-13.0 + R-10.0 continuous (U-0.055)</td>
</tr>
<tr>
<td>• Walls below grade – R-10.0 continuous</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>✓ Slabs:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Unheated slabs - perimeter insulation – R-10 for 24 in.</td>
</tr>
<tr>
<td>• Heated slabs – perimeter insulation – R-15 for 36 in.</td>
</tr>
</tbody>
</table>

Values from ANSI/ASHRAE/USGBC/IES Standard 189.1-2011
Standard for the Design of High-Performance Green Buildings

• Emphasize air sealing to further improve performance
TEMPERATURE SETPOINTS AND SCHEDULES

Temperature setpoints are shown for different occupancy states: Unoccupied, Occupied, and Unoccupied. The graph indicates temperature levels and time periods for each state.
TEMPERATURE SETBACKS

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>1</td>
</tr>
<tr>
<td>58</td>
<td>2</td>
</tr>
<tr>
<td>60</td>
<td>3</td>
</tr>
<tr>
<td>62</td>
<td>4</td>
</tr>
<tr>
<td>64</td>
<td>5</td>
</tr>
<tr>
<td>66</td>
<td>6</td>
</tr>
<tr>
<td>68</td>
<td>7</td>
</tr>
<tr>
<td>70</td>
<td>8</td>
</tr>
<tr>
<td>72</td>
<td>9</td>
</tr>
<tr>
<td>74</td>
<td>10</td>
</tr>
</tbody>
</table>

- Unoccupied
- Occupied
- Unoccupied

WINTER
TEMPERATURE SETBACKS

- **Temperature Setbacks**

 - **Unoccupied**
 - **Occupied**
 - **Unoccupied**

 - **Summer**

 - Graph showing temperature changes over time:
 - Temperature range: 72°F to 81°F
 - Time scale: 12 hours

 - Thermostat settings:
 - **70°F**
 - **71°F**
 - **72°F**

 - Images of thermostats and control panels.
Basics

- Up in the summer & down in the winter
- Optimize the schedules by zones

Advanced (BAS Users)

- Using optimum start/stop controls logic
- Using optimum start/stop *experiential* logic.
Steam Boilers

✓ Planning upgrades
 • Steam trap maintenance
 • Boiler tune-up – clean, fuel/air adjustment
 • Spark ignition
 • Energy-efficient burners - induced draft
 • Controls upgrades
 • Automatic flue dampers
 • Stack economizers
 • Pipe insulation
 • Boiler replacement:
 ✓ Consider age
 ✓ Right-sizing
 ✓ High efficiency steam boilers (80-83%)
 ✓ Consider system conversion to use higher efficiency hot-water boiler(s) (92%+)
 ✓ Advanced controls (O2 trim, auto blow down).
HEATING

Hot Water Boilers

✓ Planning upgrades
 • Boiler tune-up
 • Energy-efficient burners
 • Hot water reset
 • Automatic flue dampers
 • Burner control upgrades
 • VFDs on pumps
 • Boiler replacement:
 ✓ Right-sizing
 ✓ Modular
 ✓ Condensing
 ✓ High Efficiency (92%+)
 ✓ Advanced controls –O2 trim
Condensing boilers

Example

Add a Condensing Boiler – Supplement the two original boilers with a high efficiency modular condensing unit. This will run at peak efficiency during most of the low-load heating hours.

<table>
<thead>
<tr>
<th>Annual Savings</th>
<th>Estimated Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWh</td>
<td>kW</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Gas for heating ≥ $75,000/yr

- Full engineering analysis is necessary.
- Isolate the two old boilers with valves.
- AKA: Shoulder Boiler or Front-Loaded Boiler
- Full upgrade is always an option if funds allow.
COOLING

Chillers

✓ Planning upgrades
 • Chiller tune-up
 • Temperature resets
 • VFDs on pumps
 • Controls upgrades
 • Chiller replacement:
 • Right-sizing
 • Larger systems: Water Cooled Centrifugal ≥ 5.9 COP (≤ 0.6 kW/ton) Full Load
 • Smaller systems: Air Cooled Chillers ≥ 2.9 COP (≥ 10.0 EER)
 • Advanced controls–desuperheating, floating head pressure, condenser heat recovery
BUILDING COST BREAKDOWN

- Space Heating: 45%
- Interior Lighting: 20%
- Cooling: 15%
- Fans Pumps: 8%
- Plug Loads: 8%
- Water Heating: 2%
- Exterior Lighting: 2%
- Water Heating: 2%

TOTAL: 100%
VENTILATION

- Exterior Lighting: 2%
- Fans: 8%
- Plug Loads: 8%
- Cooling: 15%
- Interior Lighting: 20%
- Water Heating: 2%
- Ventilation: 25%
- Envelope: 20%
- Heating: 45%
Modulate ventilation rates

- Assessing current ventilation
 - Are current ventilation rates appropriate?
 - Measure/ trend CO2 levels
 - How is ventilation currently controlled?
 - Incoming air typically needs conditioning
Modulate ventilation rates

✓ Planning upgrades
 • Modulate ventilation rates using demand-based control (based on occupancy) using:
 • Sensed CO2 levels
 • Occupancy tracking (in security controlled buildings)
Modulate ventilation rates
✓ Planning upgrades
 • Modulate ventilation rates using economizer control to:
 • Reduced cooling load
 * Conditioning outside air is more energy efficient than conditioning recirculated air when the enthalpy (heat + humidity) of the outside air is less than the enthalpy of recirculated air.
 • Free cooling
 * When the outside air is both sufficiently cool and sufficiently dry (depending on the climate) no additional conditioning may be needed.
 • Use economizer control year-round when appropriate for significantly reduced mechanical cooling energy use.
Ventilation energy recovery

- Planning upgrades
 - Consider ventilation exhaust energy recovery for new air handling equipment.

Select total energy recovery – enthalpy wheel (sensible and latent heat transfer, can provide dehumidification in summer, humidification in winter).
Modulate ventilation rates

Example:

Demand Control Ventilation – Reduce the amount of outdoor air brought into the building by monitoring need with CO2 sensors.

<table>
<thead>
<tr>
<th>Annual Savings</th>
<th>Estimated Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWh</td>
<td>kW</td>
</tr>
<tr>
<td>71,248</td>
<td>0</td>
</tr>
</tbody>
</table>

- Scheduling ventilation typically only closes ventilation louvers at night and on weekends.
- Modern CO2 sensors are self-calibrating.
- Typically ≤ 1,100 ppm avoids odors.
- Occupancy override buttons in space can allow for more aggressive scheduling.

Example – 117,000 SF High School built in 2001 code min. construction.
PLANNING UPGRADES

- Fans and pumps with variable torque loads
 - Significant energy savings
 - Soft start potential
 - Manual override recommended
 - Lower motor maintenance
 - Extended motor life
 - Training recommended
Variable Frequency Drives (Variable Speed Drives)

Example:

VFDs on Heating Loop Pumps – Reduce the speed of the heating loop pumps with VFDs. Control the VFD based on pressure in the line.

<table>
<thead>
<tr>
<th>Annual Savings</th>
<th>Estimated Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWh</td>
<td>kW</td>
</tr>
<tr>
<td>36,829</td>
<td>0</td>
</tr>
</tbody>
</table>

- To control based on pressure, valve bypass loops must be removed. (i.e. Replace three-way valves with two-way valves.)
- VFDs are not useful unless you are going to turn down the flow, or replace flow restrictors.

Example – 117,000 SF High School built in 2001 code min. construction.
City of Decatur - Civic Center

<table>
<thead>
<tr>
<th>Client:</th>
<th>City of Decatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Type:</td>
<td>Civic Center</td>
</tr>
<tr>
<td>Energy Measures Implemented:</td>
<td>High Efficiency Lighting Occupancy Sensors, Boiler Pump Controls, Chiller Water Pump Sequencing</td>
</tr>
<tr>
<td>Projected Annual Energy Savings:</td>
<td>682,383 kWh</td>
</tr>
<tr>
<td>Projected Annual Cost Savings:</td>
<td>$60,000</td>
</tr>
<tr>
<td>Total Energy Incentive:</td>
<td>$25,496</td>
</tr>
<tr>
<td>EECB Grant:</td>
<td>$283,054</td>
</tr>
<tr>
<td>Project Cost:</td>
<td>$308,550</td>
</tr>
<tr>
<td>Payback Period with Incentives:</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Retrofit Savings Potential & Incentives
Case Studies - Multiple Retrofits

Kenwood Elementary

<table>
<thead>
<tr>
<th>Client:</th>
<th>Champaign Unit 4 School District</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Type:</td>
<td>Elementary School</td>
</tr>
<tr>
<td>Project Goals:</td>
<td>Reduce operating costs</td>
</tr>
<tr>
<td></td>
<td>Provide year-round comfort</td>
</tr>
<tr>
<td>Energy Measures Implemented:</td>
<td>Air sealing</td>
</tr>
<tr>
<td></td>
<td>Window replacement</td>
</tr>
<tr>
<td></td>
<td>Condensing boilers</td>
</tr>
<tr>
<td></td>
<td>High efficiency lighting</td>
</tr>
<tr>
<td>Projected Energy Savings:</td>
<td>$16,933 per year</td>
</tr>
<tr>
<td>Projected Capital Cost:</td>
<td>$138,801</td>
</tr>
<tr>
<td>Total DCEO Incentives:</td>
<td>$21,165</td>
</tr>
</tbody>
</table>

Retrofit Savings Potential & Incentives
FREE SEDAC Building Energy Assessment includes:

- Bill analysis
- Current energy cost breakdown
- Benchmarking
- Site visit
- Quick list of potential measures
- Analysis of potential incentives
- Final report with quantified recommendations
 - L3 reports also include an economic analysis
- Follow-up assistance
- Implementation tracking
✓ Start with our 1 page application
 • Include square footage, account numbers, annual energy cost totals
✓ Then the client provides:
 • 24 months of gas & electric bills
 • Building plans, layout, mechanical schedules as available
 • Site visit with appropriate personnel (2-4 hrs)
 • An energy champion to get things done
UP NEXT: RETROCOMMISSIONING

Web site: www.sedac.org
Contact: info@sedac.org
1-800-214-7954

Presentations will be available at: presentations.sedac.org